US009146957B2

a2z United States Patent (10) Patent No.: US 9,146,957 B2
Wong (45) Date of Patent: Sep. 29, 2015
(54) METHOD AND SYSTEM FOR GENERATING 2006/0167865 Al* 7/2006 Andrei ... 707/4
OPTIMAL MEMBERSHIP-CHECK QUERIES 2008/0065674 Al* 3/2008 Liuetal. 707/102
2008/0262999 Al* 10/2008 Helsenetal.cc.cc.c.... 707/2
. 2008/0319957 Al* 12/2008 Muralidhar et al. .. 707/4
(71) Applicant: Joseph Wong, Vancouver (CA) 2009/0240675 A1* 9/2009 Asaietal. woooeeveoroiinn, 707/4
2010/0030896 Al* 2/2010 Chandramouli et al. 709/224
(72) Inventor: Joseph Wong, Vancouver (CA) 2010/0036803 Al* 2/2010 Vemurietal. 70772
2010/0241629 Al* 9/2010 Tatemuraetal. 707/741
(73) Assignee: Business Objects Software Ltd., Dublin 2011/0035398 Al* 22011 Leeetal. 707/760
(IE) 2012/0124063 Al* 52012 Wong 707/754
2012/0323885 Al* 12/2012 Wangetal. ..o 707/714
2013/0086039 Al 4/2013 Salch et al.
(*) Notice: Subject to any disclaimer, the term of this . At et
patent is extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 371 days. OTHER PUBLICATIONS
(21) Appl. No.: 13/721,601 “MYSQL 5.0 Reference Manual: 8.3.1 Quter Join Simplification”, ©
. 2012, Oracle Corporation and/or its affiliates, [Online]. Retrieved
(22) Filed: Dec. 20, 2012 from the Internet: <URL: http://dev.mysql.com/doc/refman/5.0/en/
(65) Prior Publication Data outer-join-simplification.html>, (Accessed Dec. 21, 2012), 4 pgs.
(Continued)
US 2014/0181073 Al Jun. 26, 2014
(51) Int.CL Primary Examiner — Tarek Chbouki
GO6F 17/30 (2006.01) (74) Attorney, Agent, or Firm — Schwegman Lundberg &
(52) U.S.CL Woessner, P.A.
CPC GO6F 17/30466 (2013.01); GOG6F 17/30436
(2013.01) 57 ABSTRACT
(58) Field of Classification Search A method and system of transforming a query at a web server
CPC ..cocvvvvvanne GOO6F 17/30466; GOG6F 17/30436 are provided. An abstract syntax tree representing the query
See application file for complete search history. can be traversed from the top down, for each node in the
abstract syntax tree: labeling the node as being in a conjunct
Y. 2 g l
(56) References Cited position when the node’s parent is a WHERE node; labeling
the node as being not in a conjunct position when the node’s
U.S. PATENT DOCUMENTS parent is an OR node; and labeling the node identically to the
5,701,454 A * 12/1997 Bhargava etal. ..o, 1 node’s parent node when the node’s parent is an AND node.
5:774:692 A * 6/1998 Boyeretal. Then any IN node in the abstract syntax tree can be trans-
6,748,377 B1* 6/2004 Attaluri formed to an INNER JOIN node when the IN node is labeled
20037/6819256’152 izl . %; %8 (1) é (B)alm_m et al. 207/10 as being in a conjunct position. The abstract syntax tree can be
2004/0019587 Al* 1/2004 Fuhetal. ... 707/2 which can then be passed to a database for processing.
2005/0086208 Al* 4/2005 Bestgenetal. ... 707/3
2005/0262048 Al* 11/2005 Dettinger et al. . 707/3 13 Claims, 19 Drawing Sheets

Label node i

aspeingin [, Y

a conjunct
position

Label node
as not being
in & conjunct,

position

Label node
identically to
node’s
parent

Repeat for next node
in abstract syntax tree

fiode's parent 3
WHERE node
?

o
904 BegiL)

1_ 02

Recetve |2

Query

Transform
IN node to
INNER JOIN
node

node
tabeled as being
ina conjunct
position
2
N

“fransform N
node to LEFT

QUTER JOIN
node

Are

Conved
abstract

there any
¥ ~remaining nodes in~__N

e abstract syntax,
SaL query

2

syntax tree to|

Transmit
oL query to
databiase for
processing

End }

924

828

US 9,146,957 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2014/0181072 Al
2014/0188841 Al

6/2014 Wong
7/2014 Sun et al.

OTHER PUBLICATIONS

“U.S. Appl. No. 13/721,433, Examiner Interview Summary mailed
Nov. 12, 2014”, 3 pgs.

“U.S. Appl. No. 13/721,433, Final Office Action mailed Jan. 23,
20157, 25 pgs.

“U.S.Appl. No. 13/721,433, Non Final Office Action mailed Aug. 14,
20147, 25 pgs.

“U.S. Appl. No. 13/721,433, Notice of Allowance mailed Apr. 6,
2015, 12 pgs.

“U.S. Appl. No. 13/721,433, Response filed Mar. S, 2015 to Final
Office Action mailed Jan. 23, 20157, 11 pgs.

“U.S. Appl. No. 13/721,433, Response Filed Nov. 14, 2014 to Non
Final Office Action mailed Aug. 14, 2014”, 17 pgs.

“Join (SQL)”, [Online]. Retrieved from the Internet: <URL: http://
en.wikipedia.org/w/index php?oldid=529944245>, (Accessed Dec.
31,2012), 16 pgs.

“Select (SQL)”, [Online]. Retrieved from the Internet: <URL: http://
en.wikipedia.org/w/index.php?oldid=529942828>, (Accessed Dec.
31, 2012), 6 pgs.

Chamberlin, Donald D, et al., “SQL”, [Online]. Retrieved from the
Internet: <URL: http://en.wikipedia.org/w/index.
php?oldid=523499964 >, (Accessed Nov. 20, 2012), 16 pgs.
Factor, Phil, “Temporary Tables in SQL Server”, [Online]. Retrieved
from the Internet: <URL.: http://www.simple-talk.com/content/print.
aspx?article=1349>, (Sep. 1, 2011), 7 pgs.

Jones, Joel, “Abstract Syntax Tree Implementation Idioms”, Pro-
ceedings of the 10th Conference on Pattern Languages of Programs
PLoP2003 (2003), [Online]. Retrieved from the Internet: <URL:
http://web.archive.org/web/2012040611 1308/http:/www.hillside.
net/plop/plop2003/Papers/Jones-ImplementingASTs.pdf>, (2003),
10 pgs.

Kliebhan, Fabian, “A Truly Compositional SQL Compiler”, (Sep. 4,
2009), 28 pgs.

* cited by examiner

U.S. Patent Sep. 29, 2015 Sheet 1 of 19 US 9,146,957 B2

104 100
Web /]/ ?(/
Client
Results Query or interaction ;/‘38
g 2 gia
Web Server a4
a4 /Y N
108 £
\ User Activity ftem L i
Controller Controfier Controller || | Conrolier Classes
114 3 S & R
128 \ N - 4 *
g‘?ﬂ User Activity ftemn ;- Model Classes
Web Server % Y N
interface ¥ *\
Module 118
ry ActiveRecord Query BDSL Unit \&\‘
, 120
Abstract Siyﬁtax Tree 122
130 ¥ v
- i
| ocess Control | Optmization o,
] 124
Modified Abstract Syntax Tres
¥ 126
7}/
ActiveRecord Query DSL to SQL Converter /|
Diatabase :
Resulls
SQL Query
(/ l\ 102
b
2
L Database |
J

FIG. 1

U.S. Patent Sep. 29, 2015 Sheet 2 of 19 US 9,146,957 B2
202 200
weo | ¥
Client
Results
| 206
;
Web Server ¥
Absiract Syntax Tree for Query
214
Web Server| 2/
interface
Madule
f{&
265 204
\3\}“\ ¥ ﬁ/
R N /
v Access Conirol ! Qptimization
Lo v an e an ae An e A e
Madified Abstré{:t Syntax Tree
¥ 210
74
Abstract Syntax Tree fo SQL Converter
Database .
Resuits
SQL Query
212
S—
j
; Uatabas’j
.

FIG. 2

U.S. Patent Sep. 29, 2015 Sheet 3 of 19 US 9,146,957 B2

302

p 300
YWab /‘{‘&f ?
Clignt
Resulls
Weab Server
SQL Query
316 308
/‘7/ 304 /4/
Web Server v
interface ¥ /ﬁ v
Module
2 SQL to ActiveRecord Guery DSL Converter
310 Abstract Si,m’zax Tree 306
N ¥ /
RN S
P
v Access Control ; QOptimization
£ ot e o e e e e ot e
Modified Abstréct Syntax Tree
¥ 312
| i
ActiveRecord Query DSL to SQL Converter
Database
Resuits

U.S. Patent Sep. 29, 2015 Sheet 4 of 19 US 9,146,957 B2

402 v 400
sececT* 428
FROM Pl

404 | ; § | 208

EP WHERE
f § E |
408
4
anp A
E E 412
450 i i S
N OR EP region = v
‘Ridwest
| 55 |
4“{:@ I 1 418
EP firm =)/
‘SAP AG’ N
| | . |
418 ; SELECT 4’% ’
Y

N EP.id sharer_ep id :

g $ FRQ?«% g
@*2 : P 424
\ 4
N acL WHERE
i — § |
428
Recip _ep id /
=7 /?

E |

FiIG. 44

U.S. Patent Sep. 29, 2015 Sheet 5 of 19 US 9,146,957 B2

400 E{/ 400
SELECT > *'y/ 428
FROM 5
404 x i : o6
AN 74
Ep WHERE
| | § |
408
P
anp W
m}{i.ap. = TRUE]
412
410 | : ;
N OR EF region = 4
Pidwest
| ; |
414 { 3 418
N ERfirm = /1_/
'SAP AG' “‘2 d
! : i | .
418 i SELECT éfﬂ
\ 4
= ERid sharer_ep id 4
} FRON:
§ ‘ P ! 424
422 { i /
N .V
ACL WHERE
E S § |
426
Recip ep id ;/
=7 /

FIG. 4B

U.S. Patent Sep. 29, 2015 Sheet 6 of 19 US 9,146,957 B2
402 g %
SELECT * fx// 478
FROM <
404 E § | 406
3 3
\\ EP WHERE 4
| | % i
408
AND v
mm-rg Lc.p=TRUE |
412
410 § ! Y
TN EP region = U
OR MO
fidwest
| icp=TRUE §§ Le.p.=TRUE |
414 g s 416
\y EP.firm =
' %
‘SAP AG! N 4
1 g |
418 E SELECT j;zs
~ 20t o Ml ;7
S EP.id sharer_ep_id
i ; FROM; g
i m
422 ; /;24
\\ ACL WHERE
§ - § |
426
Recip ep id 4
=7 /Z

FIG. 4C

U.S. Patent Sep. 29, 2015 Sheet 7 of 19 US 9,146,957 B2

— 400
402 ¥
sELECT* |/ 428
FROM —
404 | “"’“"“‘“‘“““{““’5 R | 406
AN WV
EpP WHERE
| | § |
408
v
AND /
‘““““‘““ﬁ 1.e.p.=TRUE |
410 [s ;;2
NN EP.region =
OR
. Tidwest
| Lop=TRUE EE cp=TRUE |
414 £] 4?6
N EPfirm = ;
!SAP gG) gN : /
lic.p.=FALSE | § li.c.p.=FALSE |
N : SELECT 4’2 ’
ke y
S EPId sharer_ep id /!
§ ; FROM;
i P | soa
422 { 1 Y
A ACL WHERE
% e — § §
426
Recip ep id
;i_?p_s //

E E

FIG. 4D

US 9,146,957 B2

Sheet 8 of 19

Sep. 29, 2015

U.S. Patent

|
4

Ay DIA

8
N LY o
Y/ LON St p P I T £ = pide"dioa
/ de masus IoY
AN : ;
£ §
| m | |
SRS,
= o) |4 HO 2 0
m m £ m 1
m O pi i.m
ONY oy ssieys da eimys oY a3
LOMILSHI 103788 = PUeld NG
! 5
g 3
i i
MIOE
M HILNO 14T
H
w /W/
m W .
WOHA oer
« LOF1E8

0 \k

U.S. Patent Sep. 29, 2015 Sheet 9 of 19 US 9,146,957 B2

¥
SELECT > //
FROM
504 s § § s | 508
A\ 2
EP WHERE
§ ; § i
508
AND '@/
] .
512
510 i i /
TN AND EP region = /i
'; ‘Midwest’
i y | |
5”34 § 1 518
NP EPfirm =
‘SAP AG N 4/
g ; i |
o8 g SELECT jf ’
N ER.id sharer_ep i /7’
529 § 524
4
\Q ACL WHERE
E —_—— i E
526
Recip ep id /
=7 ﬁ

E |

FIG. 54

U.S. Patent Sep. 29, 2015 Sheet 10 of 19 US 9,146,957 B2
5{}2 ol 5{}{3
s
SELECT* L4
FROM
504 | | i 506
_ £ 3 P
\ y
Ep WHERE
| | § %
508
o
AND (4
4——_7@5,9,;1 = TRUE]
512
510 [1 %
,e‘?
N AND EP region = ¥
‘Midwest
| . |
§14 : 1 518
AN
N EPfirm= 1/
‘SAP AG’ (N 4
| | . |
o1 : SELECT ?’2{}
7
TN EP.d sharer_ep id
g FROM;
‘ P | 524
522 f } }
AN ACL WHERE %
| —— % |
526
Recip_ep id 3/
=7

FIG.5B

§ E

U.S. Patent Sep. 29, 2015 Sheet 11 of 19 US 9,146,957 B2

502 ?/ 5Q0

/
SELECTY P

FROM
5‘?;3 ! f i , E 508
A\ v
Ep WHERE
| § | !
508
/
anp 7
..—__._E;;.c,p. = TRUE]
K45
510 5 f ;/1,:.
N EP.region = §*
_ AND Midwest
L io.p=TRUE §§ 1.C.p.=TRUE |
51\;’—2 I] 516
EP.firm = ‘
‘BAP AG “\Z v
| | H 3
518 ; 520
‘ SELECT d
S EP.id sharer_ep id 4
§ y FROM; E
§ i
-l : % : 524
\ 4
N oacL WHERE
; — % |
528
Recip ep di g
=7 //

E |

U.S. Patent Sep. 29, 2015 Sheet 12 of 19 US 9,146,957 B2

500 ?‘/SGG
s
SELECT* |4/
FROM
§
5‘?’4\\ s P 506
7
EP WHERE /
E | § |
508
AND 4
mﬁi.&p. = TRUE]
510 ! i ;2
N EP.region = }¥
‘Midwest
| Lo.p.=TRUE §! i.c.p=TRUE |
814 § i 516
Ny EPfim= TR %
‘SAR AG’ ‘
| Lep =TRUE | E§ Lo.p =TRUE |
>18 § SELECT ;’2 ’
- /'
X EP.id sharer_ep id
g 3 FRQ?‘A; g
z *:fz : | 524
v
\ ACL WHERE
E e § |
528
Recip_ep id g/
=7

§ |

FIG.5D

US 9,146,957 B2

Sheet 13 of 19

Sep. 29, 2015

U.S. Patent

A4S DId

M H i
] 3
N k)1 e s
\\ LON B P A, UL 4= P10 doss
ds isRYs YOV
R pmoomonond
3 f
| w | |
ISHAMDUAL
= YOGS 43 ONY TN OV
m m ¥ w ¥
m w | O w&;
SN o de eiBys ge mirus IOy
TNLLSHI L0378 = [NO
m 3
m H i
f f
FEZHA MIOP H3NNMI
i
W N] //7,
§ o
WOH HeE
» LOFE8S

(0% ~

US 9,146,957 B2

Sheet 14 of 19

Sep. 29, 2015

U.S. Patent

B - - S

- 929 829

SHNED: BREGRIB(H

2849

8, oemj &muﬂ\mm
Reizdy BaliooRy

] 58pUU MIOP HINNI
i UM B8RO NICT HILN0
; 1437 sizudoudde asgiday.

et
31§ XBUAG weisqy

S X w 04| YRWAS

05 PRASqY Uy

x5 Aiongy
JBLIBALOTY THS X
| oi1saMenD win wunsgheng ¥
SSRGRIEG PIODEHBAIL : cO_HmngEQQ /7 PAGIBYIADY U GOM
...................................... /xé\t
e N ois W
L Ee o JonEsOEm 809 NS~

e B08 o8
09 @f/cmm

US 9,146,957 B2

Sheet 15 of 19

Sep. 29, 2015

U.S. Patent

0z
/

y

aseqeieq

804

HETAT,

SBp6
YYh 26

JBYISAUGT TG
£3 150 ABRT
pIGIBYeAnnY

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

2
aal XBRAS

s\%\\

(454

IBALIE GO

U NIOT MANNI P
B0U NIOT WELNG
13371 sipudaadde avpidey. |

S

ZEL

SiNsss esrgrie(y

ghs
-

i~

Tpy

unpenundo ,é/

BOZL

Mﬁ

981 | XEUAG RIBNSTY--

il

1

Y

H RN

¥0L

LD YOM

...... 4

\\\

204
/ 004

US 9,146,957 B2

Sheet 16 of 19

Sep. 29, 2015

U.S. Patent

8o

9ze
7/

YA

BERGEIRL

Aol 1%

B O W

4

28

uery {
...f.f....
e nonensone
L4378
FLIBAUCTY TOS

03180 Assnn
DIISBUAMIOY

RN

W

$74°1

.
e

981 XEIAG
RIS PRUIDOW

SEPOL NICH MENNL

LI SapOU NIOE MEULND
sritosdde oopioy

G54

3
uongzdo

828

. i
SYNISHS PERURIBLY

o

| XEIUAG e

091} XER
OBARGY O |

pN

Gig

IBRIFS GAAR

HAIOL]

18

s (7]

N

SBUBAUET)

1 Aienn

DICOBYIANIY

fiony Y08

14%]

U.S. Patent Sep. 29, 2015 Sheet 17 of 19 US 9,146,957 B2
P - 800
7
}\ 04 \ME‘??‘.{)
Label node | g s Py
as baing in Y shode’s parent &\, Receive P
& conjunct S WHERE node - Query
s ~ yd
position N ? e
~ Ve
TN
910 A j"fg
Label node | 2" /.// LR
asnotbheing?, Y _hode's pareni\
in a conjunct ‘\.\an OR node /’>
osition ?
B ‘ e
;{N 912 820
e 7 -
Label node s \(f/ T
914 identically to Y node’s paren§\> Transform
\ node's ~an AND node - IN nade fo
- parent ? INNER JOIN
N node
EN 916 fi" 818
- 8 ”
N d e p
Repeat for next node e /n«::;z an N Y Ka;beﬁe:{g:s beégg
¢ P E A
in abstract syntax iree \\\N node />~—-w&~\\ in a mnjunc
e posmen
e
\[N 922 IN
\\ Transtorm 1IN
node fo LEFT
QUTER JOIN
node
P RN
" there any AN Convert Transmit
Y /4en3a§nsng nodesin™~,_ N abstract | SQL query to 7 End _
m\the abstract syntax .~ syntax tree fo databasefor; N\~ .
tree SQL queary processing
924 926 998

FIG. 9

U.S. Patent

Sep. 29, 2015 Sheet 18 of 19 US 9,146,957 B2
1000
¥
L Seugin \}
(o SO i I
1002
Craate an abstract f,g,f'

syntax tree from the
query

l

Transform any LEFT QUTER 1004
SOHN nodes in the abstract .
syniax tres thatare ing /¥
conjunction position to INNER
JOHUN nodes, crealing 8
modified abstract syntax free

Convert
modifisd
absiract syntax
free to SGL

query

1006
tad

S

fssue SQL 15@8
Queryte | &7
ralations!
database
{ gnd)
N,

FIG. 10

US 9,146,957 B2

1100
¥

Graphivs Display

—~1110

Alphanumeric
Input Device

1112

Ul Navigation
Device

~1114

Storage Unit

— 1115

kachine-

readable Medium

g1

instructions

1124

|

3

U.S. Patent Sep. 29, 2015 Sheet 19 of 19
//‘l\
TN
Frocessor
1402 o - e B
11244 inshuctions
Main Meamaory
1104 g i s o
1124+ instructions
1108
L
1108~ Static Mamory b 5 e B
Network Interface » .
&
ki
1128~ Netwark <
\,\ /./"'/

| Signal Generation

Device

1118

US 9,146,957 B2

1
METHOD AND SYSTEM FOR GENERATING
OPTIMAL MEMBERSHIP-CHECK QUERIES

TECHNICAL FIELD

This document generally relates to systems and methods
for use with databases. More specifically, this document
relates to methods and systems for generating optimal mem-
bership-check queries.

BACKGROUND

Relational databases often receive queries in the form of
Structured Query Language (SQL), or other structured for-
mat. One type of command that can be present in a SQL query
is an outer join command. In an outer join command, two
tables are combined without a requirement that the two tables
have matching records. The resultant combined table con-
tains all records of a first table and all records of the second
table, with null in the places in the records of the second table
that have no matching record in the first table. A left outer join
identifies a left table as the first table and a right table as the
second table, and thus the result of a left outer join contains all
records of the left table even if the join condition finds no
matching record in the right table. Such left outer join com-
mands are utilized in a number of different queries, however
in some cases they are inefficient to process.

An inner join is a common join operation. An inner join
creates a new result table by combining column values from
a first table and a second table based upon a join-predicate. A
comparison is made of each row of the first table with each
row of the second table to find all pairs of rows which satisfy
the join-predicate. When the join-predicate is satisfied, col-
umn values for each matched pair of rows of the first table and
the second table are combined into a result row.

An IN operation allows for the specification of multiple
values, any one of which, if present, would satisfy the IN
operation. In this manner, it is similar to providing multiple
OR operations.

BRIEF DESCRIPTION OF DRAWINGS

The present disclosure is illustrated by way of example and
not limitation in the figures of the accompanying drawings, in
which like references indicate similar elements and in which:

FIG. 1 is a diagram illustrating a system, in accordance
with an example embodiment, to perform query optimization
outside of a database.

FIG. 2 is a diagram illustrating a system, in accordance
with another example embodiment, to perform query optimi-
zation outside of a database.

FIG. 3 is a diagram illustrating a system, in accordance
with another example embodiment, to perform query optimi-
zation outside of a database.

FIGS. 4A-4E illustrate abstract syntax trees in accordance
with an example embodiment.

FIGS. 5A-5E illustrate abstract syntax trees in accordance
with another example embodiment.

FIG. 6 is an interaction diagram illustrating a method, in
accordance with an example embodiment, to perform the
transformation of a query.

FIG. 7 is an interaction diagram illustrating a method, in
accordance with another example embodiment, to perform
the transformation of a query.

FIG. 8 is an interaction diagram illustrating a method, in
accordance with another example embodiment, to perform
the transformation of a query.

10

20

25

35

40

45

55

2

FIG. 9 is a flow diagram illustrating a method, in accor-
dance with an example embodiment, of transforming a query
at a web server.

FIG. 10 is a flow diagram illustrating a method, in accor-
dance with another example embodiment, of transforming a
query at a web server.

FIG. 11 is a block diagram of a computer processing sys-
tem at a server system, within which a set of instructions for
causing the computer to perform any one or more of the
methodologies discussed herein may be executed.

DETAILED DESCRIPTION

The description that follows includes illustrative systems,
methods, techniques, instruction sequences, and computing
machine program products that embody illustrative embodi-
ments. In the following description, for purposes of explana-
tion, numerous specific details are set forth in order to provide
an understanding of various embodiments of the inventive
subject matter. It will be evident, however, to those skilled in
the art that embodiments of the inventive subject matter may
be practiced without these specific details. In general, well-
known instruction instances, protocols, structures, and tech-
niques have not been shown in detail.

In an example embodiment, a database query is optimized
by replacing certain instances of left outer join commands
with inner join commands. This allows for optimization strat-
egies to be utilized within the database upon receipt of the
modified database query. One such example optimization
includes inverting a loop so that a right-hand side is evaluated
first and used as an outer loop for a join, which can be
especially helpful if the cardinality of the right-hand side is
much smaller than the cardinality of the left-hand side. This
optimization can be performed prior to the query being deliv-
ered to the database for processing, allowing for an optimized
query regardless of the exact type of database utilized (e.g.,
the solution is database-agnostic).

FIG.1isa diagram illustrating a system 100, in accordance
with an example embodiment, to perform query optimization
outside of a database. The system 100 may include a database
102, which may be a relational database designed to accept
queries in the form of SQL commands (or other types of
structured query commands). The system 100 may also
include a web client 104, such as a browser web page, which
acts to communicate with a web server 106. In some example
embodiments, the web server 106 may be a light server, such
as a light Java server.

In this example embodiment, the web client 104 interacts
with the web server 106 to generate a query. This query may
take many forms. Since the web client 104 may be designed to
operate specifically with the web server 106, the query may be
formulated using a proprietary language. Indeed, it is even
possible that the query not be a formalized query as one would
traditionally think of it, but rather could simply be an instruc-
tion to retrieve or examine certain data, which the web server
106 could then interpret as a database query. It is also possible
that the query be in the form of a database language, such as
SQL. In such cases, as will be seen later, the web server 106
may additionally contain a mechanism to convert the data-
base language to a usable form.

In the example embodiment of FIG. 1, the web server 106
may contain a series of controller classes, including a user
controller class 108, an activity controller class 110, and an
item controller class 112. The web server 106 may then addi-
tionally contain a series of model classes, including a user
class 114, an activity class 116, and an item class 118. A user
at the web browser 104 directs interaction with a view of an

US 9,146,957 B2

3

application presented within the browser. The browser inter-
acts with these classes 108-118 to define a query. For
example, a request for data is handled by one of the controller
classes 108-112 to define a query. These classes 108-118 are
used in conjunction with an ActiveRecord query domain spe-
cific language (DSL) unit 120 to convert the query from the
web client 104 into an ActiveRecord query domain specific
language. This may include converting the query into an
abstract syntax tree (or at least refining a received abstract
syntax tree to match the syntax of the ActiveRecord query
domain specific language).

The abstract syntax tree is then passed to a block 122 that
includes an optimization unit 124. The optimization unit 124
acts to convert appropriate left outer join operations to inner
join operations. The details of how this is accomplished are
described later in this disclosure. The result of this optimiza-
tion, however, is that the query has essentially been “simpli-
fied” in a way that the database 102 can perform one or more
various optimizations that speed the execution of the resulting
query.

The output of the optimization unit 124 may be a modified
abstract syntax tree, which may be passed to an ActiveRecord
Query DSL to SQL converter 126. The ActiveRecord Query
DSL to SQL converter 126 may then convert the modified
abstract syntax tree to SQL, allowing it to be executed by the
database 102. The database 102 may then pass the query
results to a web server interface module 128, which can then
present the results to the web client 104. In some example
embodiments the results are returned to or through other
elements of system 100, such as, through controller classes
108-112 to the web browser 104.

Also depicted in FIG. 1 is an access control unit 130. While
the example embodiment depicted here is non-limiting in
general, even within this example embodiment the access
control unit 130 is optional. The access control unit 130 acts
to provide access control by joining a dataset with an access
control list (ACL) table. The resulting left outer join operation
is one of many different types of left outer join operations that
can then be optimized by the optimization unit 124. The
access control unit 130 is presented in this example embodi-
ment as an example of how such a left outer join operation
could easily be encountered, and the disclosure is not
intended to be limited in applicability to left outer join opera-
tions created by an access control unit 130. The access control
unit 130 is also presented in this example embodiment
because in some embodiments both the access control unit
130 and the optimization unit 124 are part of the same block
122. This allows the access control procedures (e.g., gener-
ating left outer join operations) to be performed during the
same abstract syntax tree traversal as the optimization proce-
dures (e.g., replacing some left outer join operations with
inner join operations).

FIG. 2 is a diagram illustrating a system, in accordance
with another example embodiment, to perform query optimi-
zation outside of a database. This system 200 is similar to the
system 100 in FIG. 1, except that the web client 202 generates
aquery as an abstract syntax tree. As such, there is no need for
an ActiveRecord Query DSL unit 120 to convert the query
into an abstract syntax tree. The abstract syntax tree may be
passed directly to an optimization unit 204 in the web server
206 (or first passed through the optional access control unit
208). The optimized abstract syntax tree may then be passed
to an abstract syntax tree to SQL converter 210, which con-
verts the modified abstract syntax tree to SQL, allowing it to
be executed by the database 212. The database 212 may then
pass the query results to a web server interface module 214,
which can then present the results to the web client 202.

10

15

20

25

30

35

40

45

50

55

60

4

FIG. 3 is a diagram illustrating a system, in accordance
with another example embodiment, to perform query optimi-
zation outside of a database. This system 300 is also similar to
the system 100 in FIG. 1, except that the web client 302
generates a query as a SQL query. A SQL to ActiveRecord
Query DSL converter 304 then acts to convert the incoming
SQL query to an abstract syntax tree. The abstract syntax tree
may then be passed directly to an optimization unit 306 in the
web server 308 (or first passed through the optional access
control unit 310). The optimized abstract syntax tree may
then be passed to an abstract syntax tree to SQL converter
312, which converts the modified abstract syntax tree back to
SQL, allowing it to be executed by the database 314. The
database 314 may then pass the query results to a web server
interface module 316, which can then present the results to
the web client 302.

As described earlier, the abstract syntax tree is optimized
by replacing appropriate left outer join operations with inner
join operations. It should be noted that the term “replacing” is
used loosely in this disclosure so as to be broad enough to
cover the concept of electing not to generate a left outer join
node in the first place in favor of generating an inner join
node, in instances where a left outer join node would ordi-
narily have been generated. In an example embodiment, an
“IN” expression involving a subquery is transformed to a
combination of a join expression and Boolean expression
replacing the “IN” expression. The join expression is selected
to be either a LEFT OUTER JOIN operation or an INNER
JOIN operation based upon a conjunct position analysis,
which may be performed using the abstract syntax tree, tra-
versing from top to bottom.

By definition, a node underneath a WHERE node is evalu-
ated as being in a conjunct position (e.g.,
in_conjunct_position=TRUE). In each pass, all nodes in the
next level of the subtree are labeled as follows. If the node’s
parent is an OR node, then the node is labeled as not being in
a conjunct position (e.g., in_conjunct_position=FALSE). If
the node’s parent is an AND node, the parent node’s conjunct
position status is copied to this node. If the node’s parent is
neither an OR nor an AND, then the node is labeled as being
in neither conjunct position or not a conjunct position (e.g.,
the label is left blank, in_conjunct_position=NULL). Tra-
versal may be stopped when the previous pass labels all nodes
as blank.

The transformation may use an INNER JOIN ifthe IN node
is labeled as being in a conjunct position (e.g.,
in_conjunct_position=TRUE). Otherwise, the transforma-
tion uses a LEFT OUTER JOIN.

FIGS. 4A-4E illustrate abstract syntax trees in accordance
with an example embodiment. In this example embodiment,
the following schemas may be utilized. An EP table may
include fields for id, region, and firm. An ACL table may
include fields for sharer_ep_id, and recip_ep_id. Notably, the
inclusion of the ACL table implies that an access control unit
is utilized to generate LEFT OUTER JOINS (or at least start
the process towards the generating of the LEFT OUTER
JOINS, if the access control aspects are performed in the
same pass as the optimization aspects).

The input statement for this example embodiment, pre-
sented in SQL form, may be:

SELECT *
FROM EP
WHERE (EP.firm = ‘SAP AG’ OR
EP.id IN (SELECT sharer__ep__id FROM ACL WHERE

US 9,146,957 B2

5

-continued

6

-continued

recip_ep_id =7))
AND EP.region = ‘Midwest’

recip_ep_id=7))
AND EP.region = ‘Midwest’

FIG. 4A illustrates an abstract syntax tree, in accordance
with an example embodiment, formed from an input state-
ment. The abstract syntax tree 400 includes a series of nodes
402-426. Each node 402-426 includes a construct of the syn-
tax, representing a “value” of a node. For example, node 420
has a “value” of “SELECT * FROM”. Each node also has a
field representing a flag for in_conjunct_position, depicted as
428 of node 402 but present in each node. These fields are
depicted as being initially null in FIG. 4.

FIG. 4B illustrates the abstract syntax tree, in accordance
with an example embodiment, after a first level has been
labeled. Here, the AND node 408 has been labeled as being in
a conjunct position because its parent node is a WHERE node
406. It should be noted that while this figure is described as
depicting the abstract syntax tree after a first level has been
labeled, the process may have actually still begun with the top
node 402, stepping through each level until a level needs to be
labeled.

FIG. 4C illustrates the abstract syntax tree, in accordance
with an example embodiment, after a second level has been
labeled. Here, both OR node 410 and EP.region="Midwest’
node 412 are labeled as being in conjunct positions because
their parent node is an AND node 408.

FIG. 4D illustrates the abstract syntax tree, in accordance
with an example embodiment, after a third level has been
labeled. Here, both EP.firm=‘SAP AG’ node 414 and IN node
416 are labeled as not being in conjunct positions because
their parent node is an OR node 410. All remaining nodes
418-426 are unlabeled because their respective parent nodes
are neither OR nor AND nodes.

Atthis point, any IN node is transformed to ajoinnode. The
type of join node is dependent on whether the IN node is in a
conjunct position or not. In this example, the IN node 416 is
shown as not being in a conjunct position. As such, a plain left
outer join is used (e.g., no optimization). FIG. 4E illustrates a
modified syntax tree, in accordance with an example embodi-
ment. As can be seen, LEFT OUTER JOIN node 430 has been
added, as well as an ACL.sharer_ep_id is NOT NULL node
432 and the abstract tree 400 has been rearranged.

The modified syntax tree 400 can then be converted into
SQL. The resultant SQL query may represented as:

SELECT *
FROM EP LEFT OUTER JOIN
(SELECT DISTINCT sharer__ep__id FROM ACL WHERE
recip__ep__id = 7) ON EP.id = ACL.sharer_ep__id
WHERE (EP.firm =*SAP AG’ OR
ACL.sharer__ep__id IS NOT NULL) AND
EP.region = ‘Midwest’

FIGS. 5A-5E illustrate abstract syntax trees in accordance
with another example embodiment. This example embodi-
ment is similar to the one presented in FIGS. 4A-4E, except
that the input statement for this example embodiment, pre-
sented in SQL form, may be:

SELECT *
FROM EP
WHERE (EP.firm = ‘SAP AG’ AND
EP.id IN (SELECT sharer__ep__id FROM ACL WHERE

10

—_
w

20

30

40

45

50

wn

5

60

65

FIG. 5A illustrates an abstract syntax tree, in accordance
with an example embodiment, formed from an input state-
ment. The abstract syntax tree 500 includes a series of nodes
502-526. As with FIG. 4, each node 502-526 includes a
“value” of a node and a field representing a flag for in_con-
junct_position. These fields are depicted as being initially
null in FIG. 5.

FIG. 5B illustrates the abstract syntax tree, in accordance
with an example embodiment, after a first level has been
labeled. Here, the AND node 508 has been labeled as being in
aconjunct position because its parent node is a WHERE node
506.

FIG. 5C illustrates the abstract syntax tree, in accordance
with an example embodiment, after a second level has been
labeled. Here, both AND node 510 and EP.region="Midwest’
node 512 are labeled as being in conjunct positions because
their parent node is an AND node 508.

FIG. 5D illustrates the abstract syntax tree, in accordance
with an example embodiment, after a third level has been
labeled. Here, both EP.firm=‘SAP AG’ node 514 and IN node
516 are labeled as being in conjunct positions because their
parent node is an AND node 510. All remaining nodes 518-
526 are unlabeled because their respective parent nodes are
neither OR nor AND nodes.

Atthis point, any IN node is transformed to ajoinnode. The
type of join node is dependent on whether the IN node is ina
conjunct position or not. In this example, the IN node 516 is
shown as being in a conjunct position. As such, an inner join
is used rather than left outer join is used (e.g., optimization
occurs). FIG. 5E illustrates a modified abstract syntax tree, in
accordance with an example embodiment. As can be seen,
INNER JOIN node 528 has been added, as well as an TRUE
node 530 and the abstract tree 500 has been rearranged.

The modified abstract syntax tree 500 can then be con-
verted into SQL. The resultant SQL query may represented
as:

SELECT *
FROM EP INNER JOIN
(SELECT DISTINCT sharer__ep__id FROM ACL WHERE
recip_ep_id=7)
ON EP.id = ACL.sharer__ep__id
WHERE (EP.firm =*SAP AG’ AND
TRUE) AND
EP.region = ‘Midwest’

In some example embodiments, further optimization may
then occur. For example, the TRUE node 530 may be elimi-
nated from the WHERE expression as being redundant,
resulting in the following SQL query:

SELECT *
FROM EP INNER JOIN
(SELECT DISTINCT sharer__ep__id FROM ACL WHERE
recip_ep_id=7)
ON EP.id = ACL.sharer__ep__id
WHERE EP.firm =*SAP AG’ AND
EP.region = ‘Midwest’

FIG. 6 is an interaction diagram illustrating a method, in
accordance with some example embodiments, to perform the
transformation of a query. The method 600 utilizes various

US 9,146,957 B2

7

components, including a web client 602, a web server 604,
and a database 606. The web server 604 may include an
ActiveRecord Query DSL unit 608, an optimization unit 610,
and an ActiveRecord Query DSL to SQL converter 612.

At 614, a query, or information to define a query, is sent
from the web client 602 to the web server 604. At 616, the
ActiveRecord Query DSL unit 608 forms an abstract syntax
tree from the query. At 618, the abstract syntax tree is for-
warded to the optimization unit 610. At 620, appropriate
LEFT OUTER JOIN nodes in the abstract syntax tree are
replaced with INNER JOIN nodes, creating a modified
abstract syntax tree. At 622, the modified abstract syntax tree
is sent to the ActiveRecord Query DSL. to SQL converter 612.
At 624, the modified abstract syntax tree is converted to a
SQL query, which at 626 is issued to the database 606. Data-
base results from this SQL query are then sent to the web
client 602 (perhaps through the web server 604) at 628.

FIG. 7 is an interaction diagram illustrating a method, in
accordance with another example embodiment, to perform
the transformation of a query. The method 700 utilizes vari-
ous components, including a web client 702, a web server
704, and a database 706. The web server 704 may include an
optimization unit 708, and an ActiveRecord Query DSL to
SQL converter 710.

At 712, a query is sent from the web client 702 to the web
server 704. This query is in the form of, or includes, an
abstract syntax tree. At 714, appropriate LEFT OUTER JOIN
nodes in the abstract syntax tree are replaced with INNER
JOIN nodes, creating a modified abstract syntax tree. At 716,
the modified abstract syntax tree is sent to the ActiveRecord
Query DSL to SQL converter 710. At 718, the modified
abstract syntax tree is converted to a SQL query, which at 720
is issued to the database 706. Database results from this SQL
query are then sent to the web client 702 (perhaps through the
web server 704) at 722.

FIG. 8 is an interaction diagram illustrating a method, in
accordance with another example embodiment, to perform
the transformation of a query. The method 800 utilizes vari-
ous components, including a web client 802, a web server
804, and a database 808. The web server 804 may include a
SQL to ActiveRecord Query DSL converter 808, an optimi-
zation unit 810, and an ActiveRecord Query DSL to SQL
converter 812.

At 814, a query is sent from the web client 802 to the web
server 804. This query may be in the form of a SQL query. At
816, the SQL to ActiveRecord Query DSL converter 808
converts the SQL query into an abstract syntax tree. At 818,
the abstract syntax tree is forwarded to the optimization unit
810. At 820, appropriate LEFT OUTER JOIN nodes in the
abstract syntax tree are replaced with INNER JOIN nodes,
creating a modified abstract syntax tree. At 822, the modified
abstract syntax tree is sent to the ActiveRecord Query DSL to
SQL converter 812. At 824, the modified abstract syntax tree
is converted to a SQL query, which at 826 is issued to the
database 806. Database results from this SQL query are then
sent to the web client 802 (perhaps through the web server
804) at 828.

FIG. 9 is a flow diagram illustrating a method 900, in
accordance with an example embodiment, of transforming a
query at a web server. At 902, a query is received. This query
may either be in the form of an abstract syntax tree, or an
abstract syntax tree may be generated for the query, 904-924
represent a loop repeated for each node in the abstract syntax
tree, beginning with a first node in the abstract syntax tree. At
904, it is determined if the node’s parent is a WHERE node.
If so, then at 906 the node is labeled as being in a conjunct
position. At 908, it is determined if the node’s parent is an OR

10

15

20

25

30

35

40

45

50

55

60

65

8

node. If so, then at 910 the node is labeled as not being in a
conjunct position. At 912, it is determined if the node’s parent
is an AND node. If so, then at 914 the node is labeled identi-
cally as the node’s parent. At 916, it is determined if the node
is an IN node. If so, then at 918 it is determined if the node is
labeled as being in a conjunct position. If so, then at 920 the
IN node is transformed to an INNER JOIN node. If not, then
at 922 the IN node is transformed to a LEFT OUTER JOIN
node.

At 924, it is determined if there are any remaining nodes in
the abstract syntax tree. If so, then the process loops back to
904 for the next node. If not, then at 926, the abstract syntax
tree is converted into a SQL query. At 928, the SQL query is
transmitted to a database for processing.

FIG. 10 is a flow diagram illustrating a method 1000, in
accordance with another example embodiment, of transform-
ing a query at a web server. At 1002, an abstract syntax tree is
created from the query. At 1004, any LEFT OUTER JOIN
nodes in the abstract syntax tree that are in a conjunct position
are transformed to INNER JOIN nodes, creating a modified
abstract syntax tree. At 1006, the modified abstract syntax
tree is converted to a SQL query. At 1008, the SQL query is
issued to a relational database.

FIG. 11 is a block diagram of a computer processing sys-
tem at a server system, within which a set of instructions for
causing the computer to perform any one or more of the
methodologies discussed herein may be executed.

Embodiments may also, for example, be deployed by Soft-
ware-as-a-Service (SaaS), Application Service Provider
(ASP), or utility computing providers, in addition to being
sold or licensed via traditional channels. The computer may
be a server computer, a personal computer (PC), a tablet PC,
a Set-Top Box (STB), a Personal Digital Assistant (PDA),
cellular telephone, or any processing device capable of
executing a set of instructions (sequential or otherwise) that
specify actions to be taken by that device. Further, while only
a single computer is illustrated, the term “computer” shall
also be taken to include any collection of computers that
individually or jointly execute a set (or multiple sets) of
instructions to perform any one or more of the methodologies
discussed herein.

The example computer processing system 1100 includes
processor 1102 (e.g., a Central Processing Unit (CPU), a
Graphics Processing Unit (GPU) or both), main memory
1104 and static memory 1106, which communicate with each
other via bus 1108. The processing system 1100 may further
include graphics display 1110 (e.g., a plasma display, a Lig-
uid Crystal Display (LCD) or a Cathode Ray Tube (CRT)).
The processing system 1100 also includes alphanumeric
input device 1112 (e.g., a keyboard), a User Interface (UI)
navigation device 1114 (e.g., a mouse, touch screen, or the
like), a storage unit 1116, a signal generation device 1118
(e.g., a speaker), and a network interface device 1120.

The storage unit 1116 includes machine-readable medium
1122 on which is stored one or more sets of data structures
and instructions 1124 (e.g., software) embodying or utilized
by any one or more of the methodologies or functions
described herein. The instructions 1124 may also reside,
completely or at least partially, within the main memory 1104
and/or within the processor 1102 during execution thereof by
the processing system 1100, with the main memory 1104 and
the processor 1102 also constituting computer-readable, tan-
gible media.

The instructions 1124 may further be transmitted or
received over network 1126 via a network interface device
1120 utilizing any one of a number of well-known transfer
protocols (e.g., HTTP).

US 9,146,957 B2

9

While the machine-readable medium 1122 is shown in an
example embodiment to be a single medium, the term
“machine-readable medium” should be taken to include a
single medium or multiple media (e.g., a centralized or dis-
tributed database, and/or associated caches and servers) that
store the one or more sets of instructions 1124. The term
“machine-readable medium” shall also be taken to include
any medium that is capable of storing, encoding or carrying a
set of instructions for execution by the computer and that
cause the computer to perform any one or more of the meth-
odologies of the present application, or that is capable of
storing, encoding or carrying data structures utilized by or
associated with such a set of instructions. The term “machine-
readable medium” shall accordingly be taken to include, but
not be limited to, solid-state memories, and optical and mag-
netic media.

While various implementations and exploitations are
described, it will be understood that these embodiments are
illustrative and that the scope of the claims is not limited to
them. In general, techniques for maintaining consistency
between data structures may be implemented with facilities
consistent with any hardware system or hardware systems
defined herein. Many variations, modifications, additions,
and improvements are possible.

Plural instances may be provided for components, opera-
tions, or structures described herein as a single instance.
Finally, boundaries between various components, operations,
and data stores are somewhat arbitrary, and particular opera-
tions are illustrated in the context of specific illustrative con-
figurations. Other allocations of functionality are envisioned
and may fall within the scope of the claims. In general, struc-
tures and functionality presented as separate components in
the exemplary configurations may be implemented as a com-
bined structure or component. Similarly, structures and func-
tionality presented as a single component may be imple-
mented as separate components. These and other variations,
modifications, additions, and improvements fall within the
scope of the claims.

While the embodiments are described with reference to
various implementations and exploitations, it will be under-
stood that these embodiments are illustrative, and that the
scope of claims provided below is not limited to the embodi-
ments described herein. In general, the techniques described
herein may be implemented with facilities consistent with any
hardware system or hardware systems defined herein. Many
variations, modifications, additions, and improvements are
possible.

The term “computer readable medium”is used generally to
refer to media embodied as non-transitory subject matter,
such as main memory, secondary memory, removable stor-
age, hard disks, flash memory, disk drive memory, CD-ROM
and other forms of persistent memory. It should be noted that
program storage devices, as may be used to describe storage
devices containing executable computer code for operating
various methods, shall not be construed to cover transitory
subject matter, such as carrier waves or signals. “Program
storage devices” and “computer-readable medium” are terms
used generally to refer to media such as main memory, sec-
ondary memory, removable storage disks, hard disk drives,
and other tangible storage devices or components.

Plural instances may be provided for components, opera-
tions, or structures described herein as a single instance.
Finally, boundaries between various components, operations,
and data stores are somewhat arbitrary, and particular opera-
tions are illustrated in the context of specific illustrative con-
figurations. Other allocations of functionality are envisioned
and may fall within the scope of the claims. In general, struc-

10

15

20

25

30

35

40

45

50

55

65

10

tures and functionality presented as separate components in
the exemplary configurations may be implemented as a com-
bined structure or component. Similarly, structures and func-
tionality presented as a single component may be imple-
mented as separate components. These and other variations,
modifications, additions, and improvements fall within the
scope of the claims and their equivalents.

What is claimed is:

1. A method of transforming a query at a web server, the
method comprising:

traversing, at the web server, an abstract syntax tree repre-

senting the query, for each node in the abstract syntax

tree:

setting a conjunct position field in a data structure cor-
responding to the node as true when the node’s parent
is a WHERE node;

setting a conjunct position field in a data structure cor-
responding to the node as false when the node’s parent
is an OR node;

setting a conjunct position field in a data structure cor-
responding to the node as identical to a conjunct posi-
tion field in a data structure corresponding to the
node’s parent node when the node’s parent is an AND
node;

transforming any IN node in the abstract syntax tree to an

INNER JOIN node when the conjunct position field in
the data structure corresponding to the IN node is set as
true;

converting the abstract syntax tree into a Structured Query

Language (SQL) query; and

transmitting the SQL query to a database for processing.

2. The method of claim 1, further comprising:

receiving the query from a web client;

transforming the query into an ActiveRecord query domain

specific language abstract syntax tree; and

the converting including converting an ActiveRecord

query domain specific language abstract syntax tree into
the SQL query.

3. The method of claim 1, further comprising:

receiving the query at the web server as a SQL input query;

and

converting the SQL input query to the abstract syntax tree.

4. The method of claim 1, further comprising:

transforming any IN node in the abstract syntax tree to a

LEFT OUTER JOIN node when the IN node is labeled
as not being in a conjunct position.

5. The method of claim 1, further comprising joining a
table that is a subject of the query with an access control list
table, creating an IN node in the abstract syntax tree.

6. The method of claim 5, wherein the joining is performed
during the traversing.

7. The method of claim 5, wherein the joining is performed
prior to the traversing an abstract syntax tree representing the
query.

8. A web server comprising:

a processor;

memory;

a optimization unit configured to:

traverse an abstract syntax tree representing the query,
for each node in the abstract syntax tree:

setting a conjunct position field in a data structure cor-
responding to the node as true when the node’s parent
is a WHERE node;

setting a conjunct position field in a data structure cor-
responding to the node as false when the node’s parent
is an OR node;

US 9,146,957 B2

11

setting a conjunct position field in a data structure cor-
responding to the node as identical to a conjunct posi-
tion field in a data structure corresponding to the
node’s parent node when the node’s parent is an AND
node; and

transform an IN node in the abstract syntax tree to an
INNER JOIN node when the conjunct position field in
the data structure corresponding to the IN node is set
as true; and

transform an IN node in the abstract syntax tree to a
LEFT OUTER JOIN node when the conjunct position
field in the data structure corresponding to the IN
node is set as false; and

an abstract syntax tree to SQL converter configured to
convert the abstract syntax tree into a SQL query and to
transmit the SQL query to a database for processing.
9. The web server of claim 8, further comprising:
an ActiveRecord Query domain specific language unit con-
figured to transform the query into an ActiveRecord
query domain specific language abstract syntax tree.
10. The web server of claim 9, further comprising a user
controller class, a user class, an activity controller class, an
activity class, an item controller class, and an item class.
11. The web server of claim 8, further comprising:

a SQL query to abstract syntax tree converter configured to
convert an SQL input query to the abstract syntax tree.

15

20

25

12

12. The web server of claim 8, further comprising an access
control unit configured to join a table that is a subject of the
query with an access control list table, creating an IN node in
the abstract syntax tree.

13. A non-transitory computer-readable storage medium
comprising instructions that, when executed by at least one
processor of a machine, cause the machine to perform opera-
tions of transforming a query at a web server, the method
comprising:

Traversing an abstract syntax tree representing the query,

for each node in the abstract syntax tree:
setting a conjunct position field in a data structure corre-
sponding to the node as true when the node’s parent is a
WHERE node;

setting a conjunct position field in a data structure corre-
sponding to the node as false when the node’s parent is
an OR node;
setting a conjunct position field in a data structure corre-
sponding to the node as identical to a conjunct position
field in a data structure corresponding to the node’s
parent node when the node’s parent is an AND node;

transforming any IN node in the abstract syntax tree to an
INNER JOIN node when the conjunct position field in
the data structure corresponding to the IN node is set as
true;

converting the abstract syntax tree into a Structured Query

Language (SQL) query; and
transmitting the SQL query to a database for processing.

#* #* #* #* #*

